FAKIDOV et al.

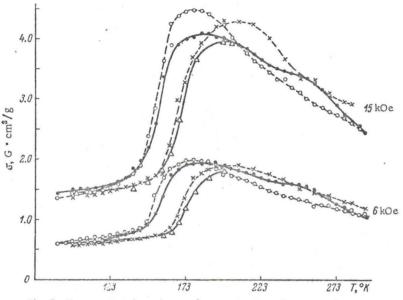


Fig. 5. Temperature dependence of magnetization of Mn_3Ge_2 alloy at atmospheric pressure (solid curves) and at 9700 atm (dashed curves).

TABLE 1. Thermodynamic Data Characterizing the Low-Temperature Transition in $\mbox{Mn}_3\mbox{Ge}_2$

θ1, °K	∆v, cm ³ /g	Δσg, G•cm ³ /g	∆S , ergs∕g•deg	∆Q, cal/g
158	-1.55 • 10-5	2.0	$0.8 \cdot 10^4$ 5.0 \cdot 10^4	0.030 0.190

 $\sigma = \sigma_{\rm S} + \chi \rm H$; extrapolation of the obtained lines to a zero field made it possible to determined $\sigma_{\rm S}$. These values were then corrected for the $\rm Mn_3Ge_2$ phase content since, as noted above, our samples were an eutectic of $\rm Mn_3Ge_2$ and Ge. The change in specific volume ΔV has been found from dilatometric data and the sample density $\rho = 6.44 \rm ~g/cm^3$ measured by hydrostatic weighing.

As seen in Table 1 the change in entropy $\Delta S_1 = 0.8 \cdot 10^4 \text{ ergs/g} \cdot \text{deg}$ calculated from magnetic measurements differs considerably from $\Delta S_2 = 5.0 \cdot 10^4 \text{ ergs/g} \cdot \text{deg}$ found from the shift of Θ_1 with pressure and from the change in volume at the point of transition. Consequently, the obtained data are suitable only for a qualitative comparison with the Kittel theory, which is based on the exchange-inversion mechanism [8].

This theory states that the change of magnetic transition temperature with pressure depends on Young's modulus and on the thermal expansion co-efficient in the paramagnetic temperature inter-vals:

 $\frac{d\theta}{dP} = \frac{1}{E\alpha_{\rm D}}$.

Our experimental data give Young's modulus of Mn_3Ge_2 as $5.50 \cdot 10^{11} dyn/cm^2$ whereas the Kittel equation gives $E = 2.5 \cdot 10^{14} dyn/cm^2$; the sign of $d\Theta_1/dP$ also does not agree with theoretical conclusions. As was already mentioned, the magnetic transition in Mn_3Ge_2 which takes place at the point Θ_1 with rising remperature is accompanied by constriction of the crystal lattice, whereas the theory [10] predicts lattice expansion in the case of an AF \rightarrow F transition. The change in lattice parameter in the AF \rightarrow F transition is determined by

$$\Delta a = a_{\rm F} - a_{\rm AF} = \frac{2p}{R} M^2,$$

where ρ is the rate of change of the exchange interaction as a function of interatomic spacing, $R = E/a^2$, and M is the sublattice magnetization. This expression makes it clear that the sign of Δa is governed by the sign of ρ , i.e., by the sign of the derivative of the change of magnetic transition temperature with pressure. It should be mentioned in this connection that the negative sign of the d Θ_1 /dH effect observed experimentally also does not agree with the Kittel expression

$$\frac{d\Theta}{dH} = -\frac{1}{\rho M} \left(\frac{\partial a}{\partial T} \right)_P.$$

The exchange-inversion theory of C. Kittel has been further expanded in [14]. The entropy change

1184